
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2004; 46:1099–1125
Published online 20 October 2004 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.780

Two-dimensional anisotropic Cartesian mesh adaptation for the
compressible Euler equations

W. A. Keats∗;† and F.-S. Lien

Department of Mechanical Engineering; University of Waterloo; Waterloo; Ontario N2L 3G1; Canada

SUMMARY

Simulating transient compressible �ows involving shock waves presents challenges to the CFD
practitioner in terms of the mesh quality required to resolve discontinuities and prevent smearing. This
paper discusses a novel two-dimensional Cartesian anisotropic mesh adaptation technique implemented
for transient compressible �ow. This technique, originally developed for laminar incompressible �ow,
is e�cient because it re�nes and coarsens cells using criteria that consider the solution in each of
the cardinal directions separately. In this paper, the method will be applied to compressible �ow. The
procedure shows promise in its ability to deliver good quality solutions while achieving computational
savings.
Transient shock wave di�raction over a backward step and shock re�ection over a forward step are

considered as test cases because they demonstrate that the quality of the solution can be maintained as
the mesh is re�ned and coarsened in time. The data structure is explained in relation to the computational
mesh, and the object-oriented design and implementation of the code is presented. Re�nement and
coarsening algorithms are outlined. Computational savings over uniform and isotropic mesh approaches
are shown to be signi�cant. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: anisotropic mesh; Euler equations; shock waves; Cartesian geometry; transient adaptation

1. INTRODUCTION

This paper focuses on the use of the anisotropic Cartesian mesh adaptation technique to
improve the resolution of numerical �ow simulations governed by the two-dimensional Euler
equations. In particular, �ows with strong transient shock waves are chosen to test the ability
of the re�nement algorithm to handle moving discontinuities.

∗Correspondence to: W. Andrew Keats, Department of Mechanical Engineering, University of Waterloo,
200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.

†E-mail: wakeats@alumni.uwaterloo.ca

Received 2 April 2004
Copyright ? 2004 John Wiley & Sons, Ltd. Revised 2 August 2004

1100 W. A. KEATS AND F.-S. LIEN

1.1. Governing equations

The Euler equations provide a model for the inviscid compressible �ow of a homogeneous
�uid in subsonic and supersonic regimes [1]. They can be used to numerically predict the
locations and shapes of shock waves that occur in regions of the �ow where the e�ects of
viscosity are negligible.
In two space dimensions, the Euler equations are

@u
@t
+
@f
@x
+
@g
@y
=0 (1)

where

u=

�

�u

�v

�eT

 ; f =

�u

�u2 + p

�uv

(�eT + p)u

 ; g=

�v

�uv

�v2 + p

(�eT + p)v

The variable u is the vector of conserved variables; mass, momentum and energy, all per
unit volume. The pressure p is obtained using an equation of state for ideal gases:

p=(�− 1)(�eT − 1
2�(u

2 + v2)) (2)

The variables f and g represent horizontal and vertical mass, momentum and energy �uxes,
plus their respective pressure contributions.

1.2. Mesh adaptation

Qualitatively speaking, the governing equations are solved over a mesh consisting of a mul-
titude of tiny adjacent �nite volumes (otherwise known as cells). Each cell maintains corre-
sponding {�;p; u; v} values, usually located at the centroid of the cell, and the overall solution
consists of the �eld of {�;p; u; v} encompassed by the mesh. Thus, the resolution of the nu-
merical solution is limited by the distance between adjacent �nite volumes.
Mesh adaptation serves to selectively modify the mesh layout so that in regions of the �ow

where high resolution is required to discern �ow features, more cells are added. Likewise,
in smooth regions of the �ow, cells are removed in order to increase the computational
e�ciency. The total number of cells in the computational mesh does not necessarily need to
remain constant, as long as it does not grow beyond the memory capacity of the computer.
Isotropic mesh adaptation re�nes areas of the mesh by subdividing cells into smaller cells
of equal aspect ratio. Anisotropic mesh adaptation does not necessarily preserve aspect ratio
while subdividing and joining cells.

1.3. Scope

Isotropic Cartesian mesh adaptation has been presented in References [2, 3] and applied to
steady and transient compressible �ow. However, anisotropic Cartesian mesh adaptation has
only been used to solve transient incompressible [4] and steady compressible [5] �ows.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1101

All of the test cases considered in this paper are transient and involve strong shock waves.
The re�nement and coarsening algorithms presented in Reference [4] cannot be directly ap-
plied to such test cases and must be modi�ed to meet the mesh smoothness requirements of
compressible �ow.

2. NUMERICAL METHOD

2.1. Finite volume discretization

In this paper we consider unstructured two-dimensional anisotropic Cartesian grid cells, such
as the one shown in Figure 1. The conserved variables u are stored at the cell centres, and
the face �uxes f and g, stored at the faces, are indexed by cardinal direction {N, S, E,W} and
position (denoted by subscript {0, 1}).
For the general case of a Cartesian grid cell with a maximum of two faces in each of

the cardinal directions, integration of the Euler equations over a control volume yields the
discrete equation:

un+1 = un −�t 1
�x�y

[
1∑
i=0
(lfacef)Ei −

1∑
i=0
(lfacef)Wi +

1∑
i=0
(lfaceg)Ni −

1∑
i=0
(lfaceg)Si︸ ︷︷ ︸

[·]=F(u)

]
(3)

where �x and �y are the width and height of the cell, respectively, and lface refers to the
length of the face in position i. In the more specialized case of a uniform, structured Cartesian
grid, Equation (3) reduces to

un+1 = un − �t
�x

(fE0 − fW0)− �t
�y

(gN0 − gS0) (4)

Equation (4) is �rst-order accurate in time. Higher-order extension is discussed in
Section 2.4.3.

x

y

West

North

South

EastufW
0

f E
0

f E
1

g N
0 g N

1

g S
0

Figure 1. A sample Cartesian grid cell with multiple faces and neighbours.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1102 W. A. KEATS AND F.-S. LIEN

2.2. Boundary conditions

2.2.1. Walls. Any cell face may be speci�ed as a wall boundary condition, in which case
the �ux through the face is modi�ed by setting the normal component of the velocity to zero.
For horizontal wall-faces, v=0; for vertical walls, u=0. This leaves only a pressure term in
the momentum �ux; for simplicity, this term is set equal to the cell-centred pressure, so that:

p(xi+1=2; y; t)≈p(xi; y; tn) +O(�x) +O(t − tn) (5)

is a constant extrapolation of pressure that is �rst-order accurate in space [6]. Linear and
higher-order extrapolation may be used instead.

2.2.2. In�ow and out�ow. All in�ow and out�ow boundary conditions used in the test cases
described in this paper are supersonic. At inlets, all primitive �ow variables are speci�ed and
interface �uxes calculated accordingly. At outlets, no variables require speci�cation; �uxes
are calculated using the cell-centred conserved variables u from the previous time step.

2.3. First-order numerical scheme

The AUSM+ scheme of Liou [7] was chosen as the base numerical scheme for the present
work. It is an extension of the original advection upstream splitting method (AUSM) scheme
of Liou and Ste�en [8] in which the �ux vector, divided into convective and pressure com-
ponents, is split based on Mach number. The division occurs in the momentum component
of the �ux, but not in the energy component.
This scheme was used throughout the research for the following reasons:

1. It is a more recent �ux vector splitting that overcomes the disadvantages of earlier
alternatives, yet it has already been proved reliable for a range of di�erent �ow regimes
(see, for example, Reference [9]), and is simple to implement in code.

2. The order of accuracy of the scheme was found by Ripley [10] to be 1.81 on a uniform
Cartesian mesh.

2.4. Higher-order extension

Spatial and temporal extension of the numerical method to second- and higher-order accuracy
provides a way of superlinearly improving the accuracy of the solution as cell sizes and time
steps are reduced.
In all of the numerical methods discussed previously, cell data are assumed piecewise-

constant; the �ux at the face is generated by a cell-centred conserved variable u. This lack
of variation in u introduces dissipative errors into the solution (see Reference [11] for a
discussion of dissipative and dispersive errors) which result in the unwanted smearing of �ow
features such as shock and contact discontinuities.

2.4.1. Spatial extension. In order for a �nite-volume numerical method to achieve second-
order accuracy, gradient information must be used in the calculation of the �uxes at cell
interfaces. In van Leer’s monotone upstream-centred scheme for conservation laws (MUSCL)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1103

sface

φface = φ
°
+∇φ

°
 · sface

φ°, ∇φ°

Figure 2. Cell-centred � are extrapolated to cell faces.

approach, piecewise-constant cell-centred data is modi�ed by higher-order components of the
Taylor series approximation to u at the cell faces [12]. Speci�cally, for a second-order accurate
solution, the cell-centred u must be extrapolated to the cell faces using ∇u in order to calculate
f± and g±. This extension to the numerical method is vital when using irregular meshes, since
�rst-order �nite di�erences lose accuracy when grid spacing is non-uniform.
Figure 2 demonstrates a typical part of an anisotropic Cartesian mesh, in which cell-

centred � values (individual components of u) are linearly extrapolated to face centres via the
gradient, ∇�.

2.4.2. Gradient limiters. First-order numerical schemes are highly dissipative; second and
higher order are much less so. Gradients calculated based on information across �ow
discontinuities, such as shock and contact waves, are invalid, and may lead to the catas-
trophic destabilization of the solution. For example, �uxes calculated based on unrealistic
gradient information may yield negative pressures and densities at the next time step.
In order to overcome these problems while maintaining second-order accuracy throughout

the majority of the domain, the solution gradients must be modi�ed in the presence of dis-
continuities and other sharp �ow features. In the present code, gradients are modi�ed using
either the minmod limiter or the superbee limiter [12].
The use of limiters to smooth gradient information does not guarantee the stability of the

solution in two or more dimensions. However, it provides great improvement over unlimited
solutions, most of which do not converge (they result in negative pressure and density) at
high Mach numbers.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1104 W. A. KEATS AND F.-S. LIEN

2.4.3. Temporal extension. In this work, a formally second-order accurate three-stage Runge–
Kutta time-stepping scheme was adopted for the following reasons:

1. The �rst-order time-stepping procedure of Equation (4) is highly sensitive to CFL number
when combined with the AUSM+ scheme. Using the three-stage Runge–Kutta technique
allows improved stability at CFL numbers approaching unity.

2. For high Mach numbered test cases (Mach 2 and above), additional dissipation is needed
to maintain positivity of density and pressure. By using a combination of �rst- and
second-order spatial accuracy through di�erent time steps, the solution can approach
second-order accuracy in space while remaining stable.

This technique, outlined in Reference [11], is reproduced below:

u(∗) = un −�tF(un)

u(∗∗) =
1
2
[un + u(∗)]− �t

2
F(u(∗)) (6)

un+1 =
1
2
[un + u(∗∗)]− �t

2
F(u(∗∗))

where F(u) is the summation of the �uxes through all cell faces, as in Equation (3).

3. CARTESIAN ANISOTROPIC ADAPTATION TECHNIQUE

The adaptation method discussed here is based on a method that was originally developed by
Ham et al. [4]. It is an unstructured face-based method that can transiently re�ne and coarsen
grid cells. Ham et al., applied the method to two- and three-dimensional incompressible �ow
at Reynolds numbers below 150. The main advantage of using anisotropic grid re�nement
over isotropic re�nement is the fact that memory and computational savings can be realized
when the �ow gradients are anisotropic in the x- and=or y-directions. Even if anisotropy is
present away from these cardinal directions, the method still yields computational savings
over an isotropic technique.
The adaptation method and criteria described in this section are independent of the choice

of numerical method, provided that the method has a compact stencil and can be written in
conservation form, or in other words, as the updating of cell-centred u based on interface f and
g. The data structure and algorithm are similar to those presented in Reference [4], but several
key di�erences allow the method to be applied to transient compressible �ow. Speci�cally,
Algorithms 3.1–3.4 place additional limits on the re�nement levels of neighbouring cells in
order to keep the mesh relatively smooth. Also, coarsening and re�nement are performed less
aggressively than in Reference [4] in order to minimize the e�ect of errors introduced in the
extrapolation of cell-centred data to new cell centres.

3.1. Data structure

3.1.1. Object and class de�nitions. The present code is object-oriented, with individual classes
de�ned for computational cells and interfaces, as well as their encompassing mesh, as shown
in Figure 3.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1105

Mesh

Cells

Faces

Figure 3. Classes of objects found in the computational mesh.

(i, j) = (0, 0)

[li , l j] = [0, 0]

(0, 0)(0, 0)(1, 0)

(1, 0)(1, 0)

(1, 1) (2, 1) (3, 1)

[0, 0][0, 0][0, 0]

[0, 1]

[0, 1]

[0, 1]

[1, 1][1, 1]

(a) (b) (c)

Figure 4. Cell indexing system used in the present code: (a) initial mesh (2 cells);
(b) after a y-re�nement; and (c) after a x-re�nement.

In Reference [4], Ham et al., use an (i; j) indexing scheme to keep track of cell (x; y)
locations. The present code maintains (x; y) locations explicitly, but also retains the (i; j)
indexing scheme in order to simplify the mesh adaptation process.
Figure 4 illustrates the nature of cell indexing. The (i; j) indices correspond to the indices

that would be needed if the mesh were structured, with each cell at the same re�nement level.
The [li; lj] indices denote the re�nement level of the cell; the computational mesh is initially
constructed from cells whose re�nement levels are zero. It is important to note that whereas
the original indexing system of Reference [4] was based around a single origin cell of indices
(0; 0) and re�nement level [0; 0], the system has been modi�ed to permit multiple initial cells
(which aids in the formation of backward and forward steps) with re�nement levels of [0; 0],
but non-zero indices.
The cell coarsening algorithm uses the (i; j) indices to determine suitable partner cells; in

doing so, it helps to maintain the smoothness of the mesh by avoiding ‘brick wall’ formations,
illustrated in Figure 5. Such irregular meshes were found to cause serious degradation in the
solution quality.
In terms of variable storage, Cell and Face objects are required to keep track of their

respective conserved variables and �uxes, as well as standard geometric parameters required

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1106 W. A. KEATS AND F.-S. LIEN

Figure 5. The (i; j) indexing system allows the algorithm to avoid such irregular coarsening.

Table I. Class de�nitions.

Cell Face Mesh

u f CFLmax
∇{u}k (x; y) [li; lj]max
(x; y) l [li:lj]min
(�x; �y) bcFlags[] dimension[]
(i; j)
[li; lj]

Table II. Variable de�nitions.

Variable name De�nition

u Cell-centred conserved variable
∇{u}k Gradient of kth u component
(x; y) Cell=face-centred coordinates
(�x;�y) Cell size
(i; j) Cell index
[li; lj] Cell re�nement level
f Face-centred �ux
l Face length
bcFlags[] Boundary condition �ags
CFLmax Maximum CFL number within the mesh
[li; lj]max Maximum allowable cell re�nement levels
[li; lj]min Minimum allowable cell re�nement levels
dimension[] Mesh layout parameters

in an unstructured, adaptive mesh. Tables I and II summarize the minimum necessary storage
requirements for each class.
Flags must also be stored for the re�nement and coarsening procedures; however, they can

be implemented in many di�erent ways and are thus left to the developer.

3.1.2. Object model. The relationships between Cell, Face and Mesh objects are shown in
the uni�ed modelling language (UML) aggregation diagram of Figure 6 (see, for example,
Reference [13] for an introduction to UML and examples of aggregation diagrams). As de-
scribed by Figure 3, the Mesh is composed of linked lists of individual Cell and Face objects.
Linked lists are the most e�cient data structures to use when objects must be dynamically
added to and deleted from the list.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1107

Mesh

Cell

Cell

Face

Face

list<Cell> list<Face>

1 1

11

1 4..8

1 1..2

Figure 6. Class aggregation diagram.

new Faces

φ
°
, ∇φ

°

φc

φa φb

φ
°

φc

φa φb

φ
°
′′

′

Figure 7. Cell re�nement procedure.

3.1.3. Required object facilities. Without discussing �ne details of the code, the classes must
implement the functionality required by the re�nement and coarsening processes:
Cell re�nement: This process is outlined in Figure 7, and requires the following to be

performed:

1. Create a new Cell and extrapolate �◦ to �′
◦ and �

′′
◦ using ∇�◦.

2. Modify (x; y), (�x;�y), (i; j), and [li; lj] of the re�ned Cells appropriately.
3. Create a new Face between the split Cells, and remap neighbouring Cells’ faces ap-
propriately. For example, in Figure 7, the Cell containing �c will need another Face to
be added to its collection of North Faces.

4. Modify (x; y), l and bcFlags[] of any Faces that were shortened; supply appropriate
(x; y), l and bcFlags[] to any newly created Faces.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1108 W. A. KEATS AND F.-S. LIEN

deleted Face objects

φc

φa

φb

φ
°

φc

φa

φb
φ

°
′′

φ
°
′

Figure 8. Cell coarsening procedure.

Cell coarsening: This process is outlined in Figure 8, and requires the algorithm to:

1. Choose two Cells of the same dimensions and appropriate indices (i; j); remove the
upper (right) Cell and extend the lower (left) Cell.

2. Average �′
◦ and �

′′
◦ to obtain �◦.

3. Delete the upper Cell and intermediate Face from the Mesh’s list of Cells and Faces.
4. Modify (x; y), (�x;�y), (i; j), and [li; lj] of the coarsened Cell appropriately.
5. Modify (x; y) and l of any Faces that must be lengthened; delete any Faces that were
made redundant through the process of coarsening. For example, in Figure 8, the Faces
beneath and to the left of �′′

◦ must be deleted.

3.2. Re�nement and coarsening algorithms

Algorithms 3.1–3.4 reproduce in pseudo-code the x-re�nement and x-coarsening algorithms
as they are implemented in the present code. The y-re�nement and y-coarsening algorithms
are de�ned similarly. These algorithms di�er from those of Ham et al. [4] in that additional
restrictions are placed on the re�nement levels of adjacent cells, as well as the fact that
re�nement proceeds from the largest to the smallest cells. It is important to note that the
algorithms presented here do not explicitly account for re�nement and coarsening next to
boundary faces. Boundary faces cannot necessarily be ignored during the implementation of
algorithms 3.1–3.4, since depending on the language used, checking the status of a cell on
the other side of a boundary face may be an illegal operation. There are many possible ways
of implementing boundary checks, so any necessary additions to the algorithms are best left
to the programmer.
Algorithm notation: According to the Face and Cell class aggregation diagram of Figure 6,

objects of one type carry speci�c references to neighbouring objects of another type.‡ In the
algorithms that follow, this relationship is described using the right arrow, ‘→’. For example,

f
L→ c → �aggedRe�neX

refers to Face f’s left-hand Cell c’s �ag ‘�aggedRe�neX’.

‡e.g. in C++ a Face references its neighbouring Cells through pointer variables.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1109

An arrow followed by an expression in braces means that the expression acts on the variable
belonging to the object. For example,

f
L→ c → {li = li − 1}

means that Face f’s left-hand Cell c’s variable li must be decremented.
Loops and if-statements are terminated when the indent level of the pseudo-code block

returns to the same level as the originating expression: ‘end for’ and ‘end if’ are implied.
Comments are provided using slanted text enclosed by parentheses.§

1

2

3
4

5
6
7

8

9

10

11

12

13

14

15

16

17

18 3.2

3.3. Application of the algorithm to compressible �ow simulations

The re�nement and coarsening algorithms are not exactly the same as described in Reference
[4]; the present code does not perform more than one iteration of cell coarsening for each
re�nement level. It was found that additional coarsening introduces numerical instability in
areas of high gradient, while the memory savings are insigni�cant. Rather than calling the
coarsen routine for each cell until all cells are at the largest size permitted by the mesh
re�nement criteria, the code makes (li;max − li;min) iterations through the code, coarsening the
largest cells at �rst, and proceeding to the �nest. Coarsening the largest cells �rst ensures that
for a sweep of coarsening, any pair of cells are only joined once, which helps to maintain
the solution quality.

§{For example, this is a comment.}

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1110 W. A. KEATS AND F.-S. LIEN

2
1

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

1:

2:

3:
4:

5:

6:

7:

8:

9:

10:

11:

12:

13: 3.4

Another di�erence exists between the present and original versions of algorithms 3.2 and
3.4; the present versions contain additional restrictions on the re�nement levels allowed be-
tween neighbouring cells. Speci�cally, lines 5–8 of re�neX() and lines 13–19 of coarsenX()
specify that East and West neighbouring cells cannot be smaller than half the width of the
centre cell. This limit on the change in anisotropy over a given area yields a smoother solu-
tion under compressible �ow, possibly because of the simulation’s sensitivity to the gradient
reconstruction. On a highly anisotropic mesh consisting of high aspect-ratio cells, it is di�cult
to achieve a smooth and accurate reconstruction using the least-squares method.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1111

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28
29
30

Performing a sweep of the entire mesh to coarsen and re�ne the cells is not necessary at
every time step. The present code operates at low CFL numbers (in the range of 0.1–0.2),
which implies that the solution requires 5–10 time steps to change signi�cantly within a cell.
Because of this, the re�nement algorithm is run only every 5 time steps, and the coarsen-
ing algorithm every 20. Coarsening regularly does not serve to preserve solution accuracy
and is computationally more intensive than re�nement, hence its relatively infrequent applica-
tion. Infrequent coarsening was also found to yield overall memory savings similar to those

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1112 W. A. KEATS AND F.-S. LIEN

yielded by frequent coarsening; this was a promising result since it implied that cells were
not alternating between coarsening and re�nement.

3.4. Adaptation criteria

An adaptation criterion uses a function that is sensitive to some error measure or �ow features
to specify which cells need to be re�ned and coarsened. Often, this function requires the user
to supply parameters for the re�nement process to proceed correctly. This either allows �ner
control of the solution quality, or else it complicates the problem by introducing several
unknowns that CFD practitioners must ‘feel’ their way around.
There are many adaptation criteria in the literature; however, most fall under one of the

following categories:

1. Manually-tuned gradient sensors: For example, the criterion used for steady compressible
�ow by Ripley [10], based on an implementation by Lien [14]. This criterion �ags cells
for re�nement based on the absolute value of the di�erence between the density in the
centre cell and its neighbours. It is a simple criterion that is easy to implement and
consumes little computational time. However, it is not sensitive to changes in the second
derivative, and requires the user to specify a tolerance for the gradient, which depends
on the �ow being simulated.

2. Combination gradient=higher order derivative sensors: In Reference [3], Sun uses a
criterion which is based on the ratio of the second-order Taylor series truncation error
term to the �rst-order one, which, when discretized, approximates a sensor function f(�)
based on the gradients �x at the cell centre and a neighbouring face:

f(�)=
|�x; face − �x;◦|
��◦=�x + |�x;◦| ≈

∣∣∣∣�xx�x2�x

∣∣∣∣ (7)

where � is a small user-de�ned parameter used to prevent division by zero in the de-
nominator. Sun used central �nite di�erences to estimate the gradients at cell faces, and
a least-squares technique to reconstruct the cell-centred gradient. Flagging cells for re-
�nement and coarsening involves comparing the sensor function to user-speci�ed upper
and lower bounds on the ratio, �r and �c:

if f(�)¿�r ⇒ re�ne cells on either side of face

if f(�)¡�c ⇒ join cells on either side of face

This approach yielded good results for Sun’s isotropically adapted mesh, but the user-
supplied parameters were �ow-dependent, and the method did not perform as well on
the present anisotropic mesh, due to the noisy nature of the second derivative.

3. Optimal cell dimensions based on error criteria: For example, consider the lowest-order
term of the Taylor series truncation error (which is dependent on the order of the scheme
used) integrated over the cell area, as presented in Reference [4]. For a second-order
accurate scheme, this error tolerance is a function of the cell dimensions �x, �y, and the
second derivatives ∇2�. Ham et al., in Reference [4] obtained quasi-optimal expressions
for {�x;�y}target, and used those to determine the required levels of coarsening and
re�nement in the adaptation algorithm.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1113

In terms of the amount of user knowledge and intervention required to operate the CFD
code, method 3 is the most tractable since no assumptions about the solution need to be made.
The L∞ error norm provides a worst-case estimate of the error bound, and while there is no
guarantee that this matches the actual error in the solution, it is the best that can be achieved
using a Taylor remainder approximation.
For the present code, method 3 was adopted. However, instead of using the second-order

term in the Taylor series, the �rst-order term was used to generate optimal {�x;�y}target.
Two arguments can be used to justify this choice of error indicator:

1. Although the numerical method used is formally second-order accurate, the use of gra-
dient limiters and a mixture of quasi-�rst-order accurate corrections (seen in Section
3.5) reduces the code to �rst-order accuracy in the presence of discontinuities and
sharp=oscillatory �ow features.

2. The second derivative is noisy and computationally expensive to reconstruct on a non-
uniform grid, which causes the corresponding adaptation to be haphazard and lose accu-
racy in key locations.

Using ∇� as the functional of interest (the present code takes ∇�= |∇�|) and the �rst-order
term of the Taylor remainder to be the error term, the optimal {�x;�y}target were found using
Lagrange multipliers [15] to be:

�x∗ =
(
2��y
�2x

)1=3
(8)

�y∗ =

(
2��x
�2y

)1=3
(9)

where � is the user-speci�ed error tolerance.
In smooth �ow regions, one or both of �x and �y may be zero; hence, to avoid division

by zero in the code, practical expressions are:

�x∗ =
(
2�(�y + �)
(�x + �)2

)1=3
(10)

�y∗ =
(
2�(�x + �)
(�y + �)2

)1=3
(11)

where � is some small nonzero constant. In the code, �=0:01� was chosen arbitrarily. Ideally,
� should be much smaller than � but larger than machine � in order to avoid catastrophic
cancellation.

3.5. Solution reconstruction via the gradient

As described in Section 2.4.1, the MUSCL approach is used to improve the accuracy of the
numerical estimate of the cell interface �ux. This involves extrapolation of the solution u
from the centre of the cell to another point in the cell. For a formally second-order accurate

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1114 W. A. KEATS AND F.-S. LIEN

s1 s1

s2

1

2,

First-order extrapolation (φ2 = φ2) Second-order extrapolation

φ1, ∇φ1 φ1, ∇φ1

φ
1φ

 φ

′ 2 φ′′

′

∇φ2

2, φ
∇φ2

Figure 9. First- and second-order gradient extrapolation on an
anisotropic Cartesian mesh: �′=�+∇� · s.

numerical method on a uniform Cartesian mesh, this extrapolation takes u to the face of
the cell. For the corresponding �rst-order accurate method, no extrapolation is performed;
interface �uxes are based on cell-centred u.
On the adapted Cartesian meshes presented in this paper, using cell-centred u to calculate

interface �uxes results in severe degradation of the solution quality. Only by using gradient
corrections is the solution rendered reasonably smooth as compared to uniform mesh results.
However, for di�cult test cases involving high Mach numbers and rapid expansions, even
gradient-limited second-order solutions can yield negative pressures and densities—for this
reason, it is sometimes necessary to have a �rst-order scheme that will work because of its
dissipative nature.
A quasi-�rst-order accurate scheme can be constructed by using an auxiliary node approach:

on both sides of a given interface (where the �ux must be calculated), cell-centred u are
extrapolated to points equidistant from the interface. These points lie on a line that is perpen-
dicular to the interface and crosses its centre. The distance of the points from the interface is
the minimum of the perpendicular distances between each of the cell centres and the interface.
By moving the locations of the extrapolated u toward the interface, the scheme is extended
from �rst to second-order accuracy. Figure 9 demonstrates the extrapolation graphically.
The least-squares method was used to estimate solution gradients. In the speci�c case of

a uniform mesh, it can be shown that the least-squares method reduces to approximating the
gradient via two-point central di�erences.

3.5.1. Application of gradient limiters. In addition to using ∇� to increase the order of
accuracy of the method, the code requires gradient information during the re�nement procedure
to determine new cell-centred � values (see Figure 7). As described in Section 2.4.2, the use
of unlimited gradient information can result in negative pressure and density in some cells,

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1115

a

b

c

d

N

S

E
W

ab

ac

ad

Figure 10. Mesh used for gradient limiter application in the x-direction.

which dooms the entire �ow simulation. The implementation in code of the minmod and
superbee limiters, as they limit x-gradients, is as follows:

Using Figure 10 as a reference, both limiters must decide which [combination] of the
following gradients to use as the cell-centred value:

@�
@x

∣∣∣∣
ab
;

@�
@x

∣∣∣∣
ac
;

@�
@x

∣∣∣∣
ad

(12)

The face gradients are approximated as in Sun’s implementation [3]:

@�
@x

∣∣∣∣
ab

≈ �b − �a
(�xa=2) + (�xb=2)

(13)

For each cardinal direction, {N, S, E,W}, if the cell has two faces in a single direction,
the face whose gradient has the lowest absolute value is chosen for the ensuing minmod or
superbee function evaluation. For example, for the East faces of cell a in Figure 10:

@�
@x

∣∣∣∣
E
= minmod

(
@�
@x

∣∣∣∣
ab
;
@�
@x

∣∣∣∣
ac

)
(14)

The chosen limiter function is then applied as described in Section 2.4.2, using the ratio
of the {E,W} pair of gradients as input arguments.

4. RESULTS FOR ANISOTROPICALLY ADAPTED MESH

The test cases used for the validation of the adaptation technique are shock di�raction over a
backward step and supersonic �ow over a forward step. The backward step has been studied
experimentally and computationally in the literature by authors such as Skews [16], Bazhenova
et al. [17], and Hillier [18]. The forward step has been studied computationally by van Leer
[19] and Woodward and Colella [20]. Both cases are transient and therefore test the ability
of the mesh to preserve the solution quality while re�ning and coarsening in time. Since

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1116 W. A. KEATS AND F.-S. LIEN

−10 0 10 20 30 40
−20

−10

−10
−20

−10

0

10

20

30

0 10 20 30 40

0

10

20

30
Density ρ Pressure p

45 contours: 1.10 × 10−2 ≤ ρ ≤ 1.05 45 contours: 4.55 × 102 ≤ p ≤ 1.05×105

Figure 11. Mach 5.09 shock di�raction, uniform mesh: pressure and density contours.

shock di�raction over a backward step is self-similar, meshes from intermediate stages of the
computation are not shown.

4.1. Backward step

The code was successfully validated against existing results for shocks with Mach numbers
of 1.3, 2.4, and 5.09; only the Mach 5.09 results are shown here. The results of Figure 11
were computed on a uniform mesh with cells of dimensions �x=�y=40 ÷ 27 =0:15625.
Adapted mesh results are shown in Figure 12, whose minimum cell dimensions are also
�x=�y=0:15625.
The mesh was adapted according to the target cell sizes de�ned in Equation (10) using

�=10−4 and the x- and y-components of the absolute value of the gradient of density:
∇� · ei= |∇� · ei|. Density was chosen as the sensor variable because it is the conservative
variable that best indicates changes across shock, contact and expansion waves.
The contours of target cell size are arranged in a geometric sequence as indicated by the

caption (cell area �x�y varies geometrically with re�nement level n). This information was
obtained from the uniform mesh results via the calculation of (�x∗;�y∗) for every cell.
Since the re�nement algorithm is relatively conservative (it re�nes some extra cells in order
to maintain the smoothness of the mesh), the actual re�ned mesh has small cells in places that
the (�x∗;�y∗) information does not predict. In general, however, the qualitative agreement
between the actual re�ned mesh and the predicted cell sizes is good.

4.2. Mach 3.0 �ow over a forward step

This test case was performed with the same geometry and initial conditions that were used
by Woodward and Colella [20], on an adaptive mesh with minimum possible cell dimensions
�x=�y=0:2 ÷ 25 =6:25× 10−3. The adaptive mesh simulation encounters negative {�;p}

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1117

−10 0 10 20 30 40
−20

−10

0

10

20

30

0 10 20 30 40

0

10

20

30

0 10 20 30 40

0

10

20

30

0 10 20 30 40

0

10

20

30

Density ρ Pressure p

Computational meshTarget cell area (∆x* ∆y*)

Contours @ 40(
2n

2
, n = 4..11

−10
−20

−10

−10
−20

−10

−10
−20

−10

45 contours: 1.10×10−2 ≤ ρ ≤ 1.05 45 contours: 4.55×102 ≤ p ≤ 1.05×105

)

Figure 12. Mach 5.09 shock di�raction, adapted mesh: pressure and density contours.

if cells at a re�nement level higher than lmax =5 are used. If a manual entropy �x were to
be implemented at the step corner as in Reference [20], this would not be the case.
As in the backward step test case, the mesh was adapted using density as the indicator

variable for obtaining the target cell sizes (de�ned in Equations (10) and (11)). The stricter
value of �=10−5 was chosen for the error criterion because of the higher resolution of this
simulation over the backward step.
Figure 13 shows the computational mesh at di�erent points in time. Most of the shock

wave structure is set up in the �rst two time units of the simulation; afterwards, the shock
waves move relatively slowly toward their position at the end of the simulation.
Density contours are shown in Figure 14, where they are directly compared to those obtained

using the uniform mesh. The density contours are spaced linearly, whereas the di�erence
contours {��;�p} are spaced logarithmically.
It is apparent from Figure 14 that the uniform and adapted mesh solutions di�er by at

most {��;�p}=1× 10−1 in the majority of the regions outside the shock waves. Although

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1118 W. A. KEATS AND F.-S. LIEN

Figure 13. Mach 3.0 �ow over a forward step: computational mesh.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1119

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
−0.2

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

0

0.2

0.4

0.6

0.8

10 −

 −

3

10 2

 −110

1

101

Density ρ :adapted mesh result

30 contours: 2.568 × 10−1 6.067

Difference ∆ρ = |ρuniform _ ρadapted|

5 contours: ∆ρ = 1 × 10n, n = −3..1

−0.6 −0.4 −0.2
−0.2

−0.6 −0.4 −0.2
−0.2

≤ ρ ≤

30 contours: 2.568 × 10−1 6.067≤ ρ ≤

Density ρ :uniform mesh result

Figure 14. Mach 3.0 �ow over a forward step: comparison of density �eld between uniform and adapted
mesh results. The minimum cell dimension is the same for both the uniform and adapted meshes.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1120 W. A. KEATS AND F.-S. LIEN

the contours within the shock regions are very tightly packed and correspond closely be-
tween the uniform and adapted mesh results, any slight perturbation to one side or the other
may be responsible for causing the comparatively large solution di�erences on the order of
��≈ 10.
As an indication of the sensitivity of this test case to the mesh adaptation, observe that

the location of the shock re�ection at the top of the domain (at x≈ 1:8) is slightly di�erent
between the uniform and adapted mesh results. At this point, however, the shock is relatively
weak and therefore so is the solution di�erence.
One interesting implication of the results of Figure 14 is the fact that there are large

areas of the solution where the di�erences �� exceed �=10−5. This is because the ‘optimal’
target cell sizes optimize cell size based on only one single, relatively simple indicator of the
solution error, whereas in reality the composition of the solution error is more complicated
than the gradient term of the Taylor series expansion. It is already apparent from its oscillatory
behaviour and its di�culty with the step corner expansion that the uniform mesh result is
non-ideal. In addition, the very act of anisotropic mesh re�nement introduces errors into the
solution through averaging and gradient extrapolation—errors that are partially indicated by
rougher density and pressure contours.

5. CONCLUDING REMARKS

5.1. Computational resource savings

At the beginning of this paper it was promised that the anisotropic mesh adaptation technique
would yield computational resource savings over uniform and equivalent isotropically adapted
meshes. Since the forward step test case generally consumes the most resources, and its
major �ow features lie at angles o�set from the cardinal directions, it was chosen as a
worst-case scenario for the calculation of resource savings. Figure 15 quanti�es the time
and memory savings achieved over a uniform mesh, while Figure 16 quanti�es the memory
savings achieved over an equivalent isotropically adapted mesh. Processor time savings were
tabulated and plotted according to the following expression:

Panisotropic
Puniform

=
�tn; anisotropic
�tn; uniform

(15)

where �tn is the real-world time required to reach time step n within the simulation. Note
that there is no valid execution time data at time zero. Memory savings were calculated using
a similar expression:

Manisotropic

Muniform
=
mn; anisotropic
mn; uniform

(16)

where mn=(no: faces×mface)+(no: cells×mcell). For the present code, mface = 236bytes, and
mcell = 352 bytes. These quantities represent the amount of memory required by Face and
Cell objects, and depend on what extra storage is used for convenience within those classes.
Obviously, the memory savings would change if di�erent values were used for mcell and mface.
One interesting feature of Figure 15 is the fact that the processing time savings are not

proportional to the memory savings. For a uniform mesh, the required processing time is

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1121

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Processing time
Memory usage

Ratio of resource usage between simulations: adapted vs. uniform mesh

Elapsed time within the simulation

R
at

io
of

re
so

ur
ce

us
ag

e:
ad

ap
te

d
m

es
h

un
if

or
m

m
es

h

Figure 15. Memory and CPU time savings provided by anisotropic
mesh adaptation for the forward step test case.

directly proportional to the memory used, since the same number of operations must be
performed on each Cell and Face object. However, there are two key di�erences between
adaptive and uniform meshes that explain the di�erence in the processing time to memory
usage ratio:

1. The ratio of the number of cells to the number of faces is not necessarily the same for
adapted and uniform meshes. For the forward step test cases, the ratios were found to
be (

no: faces
no: cells

)
uniform

≈ 2:007;
(
no: faces
no: cells

)
adapted

≈ 2:165 (17)

Without going into the details of the code implementation, this discrepancy between
Cell=Face ratios a�ect the computational time since di�erent operations are performed
on Cells and Faces.

2. The act of mesh re�nement generally increases the amount of processor time required—
the uniform mesh obviously does not require this functionality.

For the memory usage comparison of Figure 16, the isotropic mesh memory usage was
calculated based on the assumption that all of the anisotropic cells in the mesh would be
subdivided in the appropriate direction (either x- or y-re�ned) until their aspect ratios were
equal to the equivalent isotropically re�ned cells. This assumption is not strictly correct, since
subdividing anisotropic cells with high aspect ratio would not necessarily yield exactly the
equivalent isotropic mesh. However, given the conservative nature of the coarsening algorithm
and the fact that the re�nement criterion is based on �ow gradients, the approximation seems
reasonable. Surprisingly for a �ow whose major features lie at an angle to both of the cardinal
directions, the anisotropic mesh o�ers signi�cant memory savings over the equivalent isotropic
mesh.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1122 W. A. KEATS AND F.-S. LIEN

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Anisotropic mesh
Isotropic mesh

Comparison of memory usage between simulations: anisotropic vs. isotropic mesh

Elapsed time with in the simulation

R
at

io
of

m
em

or
y

us
ag

e:
ad

ap
te

d
m

es
h

un
if

or
m

m
es

h

Figure 16. Memory savings provided by anisotropic adaptation for the forward step test case.

Table III. Division of processor time among computational tasks: forward step test case.

Code

Task Uniform (%) Adaptive (%)

Re�ne cells 0 23
Coarsen cells 0 2
Calculate AUSM+ �uxes 25 15
Step forward in time 19 26
Calculate {�; p; u} from u 3 2
Other tasks 53 32

Although the anisotropic code has the ability to re�ne isotropically, it is not instructive to
compare the processor time required for the anisotropic vs. isotropic meshes. The isotropic
mesh data structures de�ned in Reference [2] are operated upon di�erently than the list used
in the present code, and have even been vectorized (see Reference [3]) with the probable
result that they are computationally more e�cient. It is di�cult, however, to quantify this
e�ciency without setting up a test case and running the code on the same platform that was
used for the present anisotropic code.
Table III outlines the percentage of processor time spent on the main computational tasks.

The category ‘other tasks’ is primarily composed of: (a) applying the gradient limiter;
(b) calculating cell-centred and face-based gradients; (c) solution �le output; however, some
of these tasks are used by the re�nement and coarsening procedures, and so to avoid ‘double-
accounting’, only the major tasks are shown. It is interesting to note that the adaptive simu-
lation consumes more processing time when stepping forward in time. Code execution time
pro�les indicate that this is due to the requirement that the each Cell search lists of neigh-
bouring Face objects in order to add their �ux contribution.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1123

5.2. Future direction

In order for the anisotropic Cartesian adaptation technique to be e�ective for a wider range
of supersonic �ows and geometries, the areas outlined below should be examined in further
detail and implemented in code wherever possible.
Cut-cell method: This straightforward improvement has already been implemented in similar

codes by de Zeeuw and Powell [2] and Sun [3]. The cut-cell method allows for improved
resolution of arbitrary boundaries by approximating them with a line (or plane) that ‘cuts’
the computational cells. Boundary conditions are implemented by setting velocity normal to
the ‘cut’ equal to zero and interpolating the boundary pressure in the same way as described
in Section 2.2.1.
Extension to three dimensions: The data structure and algorithms were extended by Ham

et al., in Reference [4] to three dimensions; therefore, extension of the present code is tech-
nically feasible. In three dimensions, however, keeping track of adjacent faces in the code
becomes complicated, and therefore it is worth examining the present code for possible sim-
pli�cations before taking on this task.
Solution quality improvement: It is well documented that waves travelling between cells

of di�erent aspect ratios experience distortion [11, 5] and so the algorithms in this paper are
stricter than the original ones of Ham et al., in that they place greater limits on the di�erences
in aspect ratio between adjacent cells. Wu and Li [5] have proposed that such di�erences
can adversely a�ect the level of numerical dissipation present, which would suggest that the
numerical methods should take neighbouring cells’ aspect ratios into account when determining
�uxes.
Improvement in the quality of the solution would also serve to provide a better estimate of

higher-order derivatives, opening up the possibility of using them in alternate mesh re�nement
criteria.

APPENDIX A: DERIVATION OF THE OPTIMAL CELL SIZE CRITERION

Consider the Taylor series expansion of �(x) about x◦, the cell centre:

�(x)=�(x◦) + [∇�(x)]Tx+ 1
2 x

T[∇2�(x)]x+O(x3) (A1)

For a �rst-order accurate numerical scheme, the leading error term is [∇�(x)]Tx. By as-
suming that the maximum absolute error occurs at the farthest point from the cell centre, in
two dimensions the expression becomes �x

2 �x +
�y
2 �y.

Integrating this term over the cell provides an expression for the L∞ error:

��;L∞ =
∫ �x

2

−�x
2

∫ �y
2

−�y
2

�x
2
�x +

�y
2
�y dy dx=

�x2�y
4

�x +
�x�y2

4
�y (A2)

We are now in a position to formulate the optimization problem:

maximize �x�y (A3)

subject to ��;L∞6� (A4)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

1124 W. A. KEATS AND F.-S. LIEN

�x¿0 (A5)

�y¿0 (A6)

where � is a user-speci�ed error tolerance. For � a single variable such as density, this problem
can be solved analytically using Lagrange multipliers. Following the theory of optimization
using Lagrange multipliers as outlined in Reference [15], we formulate and minimize the
following Lagrange function:

L(�x;�y; �)=−�x�y − �
(
�− �x2�y

4
�x − �x�y2

4
�y

)
(A7)

Setting the derivative of L with respect to x=[�x;�y]T equal to zero yields the system
of equations:

∇xL=

−�y∗ + �∗�x
∗�y∗

2
�x + �∗�y

∗2

4
�y

−�x∗ + �∗�x
∗2

4
�x + �∗�x

∗�y∗

2
�y

=

[
0

0

]
(A8)

where �x∗, �y∗ and �∗ are optimal variable values. This system can be reduced to

�∗�x∗�x= �∗�y∗�y (A9)

It is safe to assume that the strict complementarity condition applies; in other words,
constraint (A4) is active (equality holds) at the optimal solution, x=[�x∗;�y∗]T; thus, �∗ �=0
and it can be divided out of the equation. The remaining expression,

�x∗�x=�y
∗�y (A10)

provides the value of �x∗ in terms of �y∗; by using this in the equality constraint corre-
sponding to (A4), we obtain the following expressions for the optimal target cell dimensions:

�x∗ =
(
2��y
�2x

)1=3
(A11)

�y∗ =

(
2��x
�2y

)1=3
(A12)

ACKNOWLEDGEMENTS

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC)
for the �nancial support of this work, and to Dr Meng-Sing Liou of the NASA Glenn Research Center
for his helpful discussions about the AUSM scheme.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

ANISOTROPIC CARTESIAN MESH ADAPTATION FOR THE EULER EQUATIONS 1125

REFERENCES

1. Leveque RJ. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press: Cambridge, 2002.
2. De Zeeuw D, Powell KG. An adaptively re�ned Cartesian mesh solver for the Euler equations. Journal of
Computational Physics 1993; 104:56–68.

3. Sun M. Numerical and experimental studies of shock wave interaction with bodies. Ph.D. Thesis, Tohoku
University, 1998.

4. Ham F, Lien FS, Strong AB. A Cartesian grid method with transient anisotropic adaptation. Journal of
Computational Physics 2002; 179:469–494.

5. Wu Z-N, Li K. Anisotropic Cartesian grid method for steady inviscid shocked �ow computation. International
Journal for Numerical Methods in Fluids 2003; 41:1053–1084.

6. Laney CB. Computational Gasdynamics. Cambridge University Press: Cambridge, 1998.
7. Liou M-S. A sequel to AUSM: AUSM+. Journal of Computational Physics 1996; 129:364–382.
8. Liou M-S, Ste�en CJ. A new �ux splitting scheme. Journal of Computational Physics 1993; 107:23–29.
9. Meinke M, Schr�oder W, Krause E, Rister Th. A comparison of second- and sixth-order methods for large-eddy
simulations. Computers and Fluids 2001; 31:695–718.

10. Ripley RC. Unstructured-grid methods for numerical simulation of shock wave interactions with bodies and
boundary layers. Master’s Thesis, University of Waterloo, 2002.

11. Larsson NJ. Computational aero acoustics for vehicle applications. Licentiate Thesis, Chalmers University of
Technology, 2002.

12. Toro EF. Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer: Berlin, 1999.
13. Lee RC, Tepfenhart WM. UML and C++: A Practical Guide to Object-Oriented Software Development.

Prentice-Hall: Upper Saddle River, 1997.
14. Lien F-S. A pressure-based unstructured-grid method for all-speed �ows. International Journal for Numerical

Methods in Fluids 2000; 33:355–374.
15. Nocedal J, Wright SJ. Numerical Optimization. Springer: New York, 1999.
16. Skews BW. The perturbed region behind a di�racting shock wave. Journal of Fluid Mechanics 1967; 29(4):705–

719.
17. Bazhenova TV, Gvozdeva LG, Nettleton MA. Unsteady interactions of shock waves. Progress in Aerospace

Science 1984; 21:249–331.
18. Hillier R. Computation of shock wave di�raction at a ninety degrees convex edge. Shock Waves 1991; 1:89–98.
19. van Leer B. Towards the ultimate conservative di�erence scheme. v. a second-order sequel to Godunov’s method.

Journal of Computational Physics 1979; 32:101–136.
20. Woodward P, Colella P. The numerical simulation of two-dimensional �uid �ow with strong shocks. Journal

of Computational Physics 1984; 54:115–173.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:1099–1125

